I attended the Anja S. Greer conference at Philips Exeter Academy last year and highly recommend it to anyone interested.  Details of this year’s conference have just been published, so click on the image below for more information.

A recent eSchool News article by Meris Stansbury lists ten skills cited by its readers as being most important for today’s students to acquire:

2. Type
3. Write
4. Communicate effectively, and with respect
5. Question
6. Be resourceful
7. Be accountable
8. Know how to learn
9. Think critically
10. Be happy

The list is interesting to ponder. I would not argue that any skills on the list should be dropped, however I suspect we could have endless debates about what order to list them in or how to best group them. I am happy to note that all of the skills are beneficial in studying just about any subject or discipline.

Most folks learn to multiply increasingly complex quantities gradually over time, starting with constants in elementary school, and eventually continuing on to polynomials in high school.  As the quantities become more complex, students master “the distributive property”, “collecting like terms”, and perhaps even procedures made more memorable with acronyms like “FOIL”.

When learning to multiply binomials and polynomials, people often focus more on the process than the reasoning behind it – which can makes things feel complex. Once you understand the reasoning, multiplying polynomials will hopefully become straightforward. And with a small measure of melodrama, I will describe “FFFT!”, a trivial technique with a silly name that can help make multiplying polynomials easy.

Way back in elementary school, perhaps in first grade, you were probably taught to multiply two integers:

$8\cdot 7\\*~\\*=56$

From there, you were probably asked to learn your multiplication tables. It is extremely useful, particularly when studying algebra, to know your multiplication tables by rote. This “reflex knowledge” will help you work faster, rely on a calculator less, and verify that solutions are correct with greater speed and confidence. No matter how old you may be, no matter whether you are still in school or not, I recommend mastering any gaps your multiplication tables.

Having said that, I confess that Read more…

Steve Jobs spoke at the Stanford Commencement ceremonies in 2005. While his speech lasted only 15 minutes, it contains some wonderful advice – so I encourage you to click on this link to watch it. He will be sorely missed.

Suppose nobody had ever thought of measuring the size of an angle, and someone asked you “How can I describe the size of an angle?” What approach might you take in answering this question?

You might start by arbitrarily picking some angle, any angle, such as angle ABC in the image below, and call its measure “1″. All other angles could be

Welcome to the 15th Mathematics and Multimedia Blog Carnival.

According to Wolfram Alpha, the word “fifteen” is the 379th most common spoken word. It is also the age of most High School Sophomores. I invite you to lean on your caffeine and cuisine, then careen between the following keen carnival fifteen postings on your screen.

Connections between math and real life; use of real-life contexts to explain mathematical concepts

Bon Crowder (Math Is Not a Four Letter Word) describes Read more…

I am pleased to announce that Learning and Teaching Math will host the next Mathematics and Multimedia Blog Carnival.  If you have a post that fits in one of the categories below which you would like considered for inclusion in this issue, please use the link at the end of this post to submit it before September 23, 2011.

This Blog Carnival focuses primarily on articles that Read more…

An article in The Washington Monthly titled “The College For-profits Should Fear” describes the founding and growth of Western Governors University. It uses an on-line model with some twists:

• Course credits based on assessments completed. If you pass the final assessment, you get credit for the course… even if you just took the initial course assessment a few days earlier.
• Tuition is charged per semester, not per course enrollment. This encourages students to complete as many courses per semester as they can, as it can save them money.

From what the article describes , this model seems most successful with older students – people who know what they seek, and don’t wish to waste time getting there. The WGU model is interesting for several reasons:

• It has tuition levels that are around 40% or less that of other on-line programs, about \$6,000 per year.
• It employs full-time Mentors, who serve as a combination of guidance counselor, tutor, cheer-leader, and ombudsman for students. While they seem to provide a regular point of contact between students and the degree program, the article does not specify how many hours per week of such contact a typical student receives.
• It uses industry-based standard assessments whenever possible as culminating assessments. The goals of the programs are therefore hopefully better aligned with the professional goals of the industries it is preparing students to enter.

The low tuition means that this model Read more…

People, both as children and adults, are constantly learning new things. The more actively engaged in the learning process they are, the more likely they are to learn something well and retain that knowledge. So what exactly is the person “teaching” a course doing? Their title implies that they are somehow loading knowledge into student brains. While that may fit the assumptions behind the “lecture model” of instruction, that is not the way learning works.

So what title is appropriate for people who:
- Decide on, or create a sequence of topics and tasks that engage, but do not overwhelm
- Set the stage, pique student interest, then Read more…

What was “the best” course you ever took? Probably one for which you had to work quite hard, one that you perceived as challenging from the outset, one for which you rose to the challenge. The course probably had a reputation as a tough course, so you probably added it to your schedule with care and made sure you did not take another really challenging course at the same time.

Major time commitments are regularly called for in schools: for musical or dramatic performances, athletic seasons, and some classes too. Could we improve the way such opportunities are scheduled so that  students can experience as many as possible each year without creating a killer workload for themselves at critical times during the year?

### Challenges

What if schools offered “challenges” that lasted for either half or a full semester? Each student could be required to be enrolled in two challenges at all times. A dramatic or musical performance would count as a challenge, as would a varsity sport, as would any number of academic and extra-curricular offerings. To qualify as a “challenge”, an offering would have to:

1. Culminate in a public performance, presentation, or display of student work.

Many widely used math textbooks seem written for a traditional “lecture-style” teacher. They can be challenging to teach from if you are trying to reduce time spent “talking at” the class.

Some of the NSF-funded mathematics texts published over the past decade make it much easier for a teacher to avoid lecture mode, but:

- from a parent’s perspective, some texts don’t seem to have much of a role for the teacher, so how can/should a teacher add obvious value (in student and parent eyes) to what is in the text?

- the lack of prominently highlighted boxes around all information needed for the test is a source of student gripes. Students need to re-learn “how to learn” when a text or teacher takes a different approach, so time and effort needs to be devoted to this at the start of the year.

- the format of each unit can begin to Read more…

What if most activities in school asked students to “reach and defend a conclusion”?

•  in Math, about quantitative or geometric relationships, about measurements of worldly phenomena, etc.
• in Music, about the effect of a melody line, about a particular mix of instruments, etc.
• in English, about effective use of language or metaphor, about storytelling techniques, etc.
• in Visual Arts, about the effective use of color or negative space, about how a work can be interpreted, etc.
• in History, about a set of events, about relationships between societies, etc.
• in Physical Education, about the effects of various activities on the human body, about the effectiveness of various strategies in a sport, etc.
• in Science about whether two measurements are related in some way, why they might be related, the consistency with which they seem related, about cause and effect, etc.

What might our schools look like under such an approach?

A New York Times Magazine article titled “Games Theory” (September 19, 2010) mentioned some interesting points:

- “going to school can and should be more like playing a game, which is to say it could be made more participatory, more immersive and also, well, fun.”

- One way to “make school more relevant and engaging” to those who find it boring and are therefore at risk of dropping out is “to stop looking so critically at the way children use media and to start exploring how that energy might best be harnessed to help drive them academically”

- Games provide “‘failure-based learning,’ in which failure is brief, surmountable, often exciting and therefore not scary.” Students will “Fail until they win.”

- “Failure in an academic environment is depressing. Failure in a video game is pleasant. It’s completely aspirational.”

- “When it comes to capturing and keeping Read more…

The 2011 Anja S. Greer Conference on Secondary School Mathematics at Phillips Exeter Academy provided many opportunities to hears others’ ideas about the purpose of our High School Mathematics Curriculum.  Some of the statements I noted were (with apologies that none are exact quotes, and my lack of attribution on some):

In life, not to mention just about any academic subject, students should question information they come across, then work to support or refute it using numbers as needed.

Quantitative situations can be found in poems, literature, environmental claims, social justice issues, and social service needs.  We teach mathematics so that students can decide for themselves whether the quantities involved make sense or not.  Ray Williams (St. Mark’s School, Perth, AU) presentation.